Notch‐Expanded Murine Hematopoietic Stem and Progenitor Cells Mitigate Death from Lethal Radiation and Convey Immune Tolerance in Mismatched Recipients

نویسندگان

  • Filippo Milano
  • Fabiola Merriam
  • Ian Nicoud
  • Jianqiang Li
  • Ted A. Gooley
  • Shelly Heimfeld
  • Suzan Imren
  • Colleen Delaney
چکیده

The hematopoietic syndrome of acute radiation syndrome (h-ARS) is characterized by severe bone marrow aplasia, resulting in a significant risk for bleeding, infections, and death. To date, clinical management of h-ARS is limited to supportive care dictated by the level of radiation exposure, with a high incidence of mortality in those exposed to high radiation doses. The ideal therapeutic agent would be an immediately available, easily distributable single-agent therapy capable of rapid in vivo hematopoietic reconstitution until recovery of autologous hematopoiesis occurs. Using a murine model of h-ARS, we herein demonstrate that infusion of ex vivo expanded murine hematopoietic stem and progenitor cells (HSPCs) into major histocompatibility complex mismatched recipient mice exposed to a lethal dose of ionizing radiation (IR) led to rapid myeloid recovery and improved survival. Survival benefit was significant in a dose-dependent manner even when infusion of the expanded cell therapy was delayed 3 days after lethal IR exposure. Most surviving mice (80%) demonstrated long-term in vivo persistence of donor T cells at low levels, and none had evidence of graft versus host disease. Furthermore, survival of donor-derived skin grafts was significantly prolonged in recipients rescued from h-ARS by infusion of the mismatched expanded cell product. These findings provide evidence that ex vivo expanded mismatched HSPCs can provide rapid, high-level hematopoietic reconstitution, mitigate IR-induced mortality, and convey donor-specific immune tolerance in a murine h-ARS model. Stem Cells Translational Medicine 2017;6:566-575.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

MHC-mismatched chimerism is required for induction of transplantation tolerance in autoimmune nonobese diabetic recipients.

In nonautoimmune recipients, induction of mixed and complete chimerism with hematopoietic progenitor cells from MHC (HLA)-matched or -mismatched donors are effective approaches for induction of organ transplantation immune tolerance in both animal models and patients. But it is still unclear whether this is the case in autoimmune recipients. With the autoimmune diabetic NOD mouse model, we repo...

متن کامل

A review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell

Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016